Scientific Program

Conference Series Ltd invites all the participants across the globe to attend 5th International Conference and Exhibition on Polymer Chemistry Toronto, Ontario, Canada.

Day 2 :

Keynote Forum

Michael O Wells

Reynolds Polymer Technology, USA

Keynote: Use of combination crp-thermal cure in free radical bulk polymerization systems

Time : 09:30-10:05

Conference Series Polymer Chemistry 2018 International Conference Keynote Speaker Michael O Wells photo
Biography:

Michael Wells has served in various positions within the polymer industry for 30 years.  He has held positions with such organizations as Procter and Gamble, A. O. Smith, Witco, Arkema, and currently holds the position of Director of Research and Development for Reynolds Polymer Technology.  He is a graduate of Arkansas State University with a Bachelor’s in Chemistry and Lehigh University with an M. Eng. In Polymer Science and Engineering.  He was until recently, President of the Rocky Mountain section of the Society for Plastics Engineers, and previously served on the board of the Lehigh Valley section of SPE.  His main areas of research are polymer initiation systems and polymer structure/property modification. More recently, he has been working with flame retarded acrylic materials and adhesives. He holds two US patents and 1 application in process. Michael currently resides in Grand Junction, Colorado.

Abstract:

In a series of studies carried out several years ago, some papers were presented covering the research efforts involved with using Controlled Radical Polymerization techniques in radically cured thermosetting resins. Among the positive attributes that were shown are: improved stability of initiated resins, longer potlife, the ability to create b-staged polyester materials, and most interestingly, the ability to drastically improve mechanical properties. The most noticeable ability of these unique molecules is that property of developing a two-way, reversible, “on-off” type of complex with a growing polymer chain. Since this property is dependent upon the monomeric composition and the processing temperature of the application technique, this particular technology can be used to tailor initiator systems to particular applications and conditions. The overriding question in the middle of these findings is, “what characteristic of these systems causes such changes in mechanical properties?” In this paper, an attempt is made to look mechanistically at the resins created and correlate these improvements to: molecular weight changes, changes in the molecular weight between crosslinks, changes in free volume within the matrix, changes in order/crystallinity within the resin matrix, and changes in crosslink density. It is assumed that through these studies, a better understanding of why radical controllers used in small quantities can make such profound differences in radically cured resins

Keynote Forum

Joseph D Lichtenhan

Hybrid Plastics Inc., USA

Keynote: Hemostasis with POSS® silanols

Time : 10:05:-10:40

Conference Series Polymer Chemistry 2018 International Conference Keynote Speaker Joseph D Lichtenhan photo
Biography:

Joseph D Lichtenhan, Ph.D.  Is a co-founder of Hybrid Plastics Inc.  Dr. Lichtenhan is a pioneer and world authority in the field of POSS® additives. POSS has been hailed as the first entirely new chemical class of monomers to be developed since 1955. His insights into their commercial utility launched the global sales for POSS® in 1998. Dr. Lichtenhan has excelled at technology transition and the establishment of a global footprint for POSS® via innovative sales and marketing techniques.

Abstract:

Statement of the Problem: A single "perfect" hemostat cannot exist due to the wide range of injury types experienced by humans and animals.  However, a leapfrog advancement in hemostatic devices is desperately needed to address noncompressible hemorrhagic bleeding.  More specifically, injuries to arteries in the neck, internal organs, or groin require immediate surgical attention because these types of hemorrhages do not adequately respond to compression or packing.  Despite extensive and admirable work to increase blood clotting rates, the clotting cascade alone doesn’t react fast enough, in these types of injuries, to arrest fluid loss from an artery. While hemorrhagic bleeding is often associated with battlefield trauma or acts of terrorism, uncontrolled hemorrhages can also occur in a wide range of incidences, ranging from automobile and plane accidents to recreational and home repair accidents. Nearly all hemorrhagic bleeding is initially addressed by a first responder who may or may not have any or adequate medical training for such trauma.  Therefore, one of the first requirements for developing a hemostat that works on noncompressible bleeding is for it to have high deployability and intuitive application.  This would be analogous to use of a fire extinguisher “point at the base of flame and squeeze handle”.  Next, the hemostatic agent needs to be proliferative, meaning that it is capable of translating within the wound channel to the source of the hemorrhage, even if it is not visible.  Finally, the hemostatic agent must be effective without compression.  This latter point is critical considering that only minor amounts of compression may be possible for the neck, internal organ, and groin hemorrhage. POSS additives are known to enhance medical and personal care products and have been in the UK and US markets for several years. In particular, a liquid trisilanol hepta-iso-octyl POSS is uniquely well suited for use as a hemostatic device for non-compressible bleeding. Upon contact with blood trisilanol, hepta-iso-octyl POSS rapidly prevents fluid loss and simultaneously forms a viscoelastic polymeric clot (thrombus) with blood components.  The mechanism of action for the POSS viscoelastic hemostat, along with its comparative performance relative to other hemostatic devices will be presented.  This presentation will include in vitro and in vivo findings.

Break: Networking & Refreshment Break 10:40-11:00 @ Dorothy Hall
Conference Series Polymer Chemistry 2018 International Conference Keynote Speaker Motoyasu Kobayashi photo
Biography:

Kobayashi received his Ph.D. in 2000 from the Tokyo Institute of Technology, Japan, and was appointed as an assistant professor in the Faculty of Engineering, Yamagata University, Japan (200-2004). From 2004 to 2005, he worked as a researcher at Kyushu University, Japan, and was appointed as an assistant professor in the Institute for Materials Chemistry and Engineering, Kyushu University, in 2006. He has been a group leader of the JST-ERATO project (2009-2013). After that, he moved to Kogakuin University in 2013 as an associate professor and has been full professorship since 2014. His research interests are polymer synthesis, bio-inspired chemistry, surface and interface science, such as wettability, adhesion, and the tribology of ion-containing polymers. He has been published more than 70 scientific articles, and 20 books/book chapters.

Abstract:

Phosphocholine (PC) is a zwitterion group which can be found in phosphatidylcholine lipids of the cell membrane in nature. It is widely known that the polymer bearing PC group reveals excellent bio-compatibility and antifouling properties due to extremely weak interaction between PC and protein molecules. In this work, an adhesive interaction of polyzwitterion brushes containing sulfo- and phospho-betaine groups in water was estimated by force curve measurement using scanning probe microscopy. Polyzwitterion brushes with a 110 nm thick (dry state) on a silicon wafer were prepared by surface-initiated atom transfer radical polymerization of methacrylate monomers bearing sulfobetaine (SB), PC, and inverse-PC (iPC). Inverse PC is a zwitterionic group having inverted charge orientation of quaternary amine and phosphate in contrast to PC. Chemical structure of polymers with PC and iPC

Force curve measurement on (a) poly(MPC) brush and (b) poly(MiPC-iPr) brush surface in water by using PC or iPC functional groups-immobilized silica probe Force curve measurement were performed by atomic force microscopy using a handmade sphere probe. Silica particle (d = 20 μm) covered with SB, PC, and iPC functional groups was immobilized at the edge of a tipless cantilever with a small amount of epoxy resin. Adhesion force on the surface of SB and PC brushes were lower than 1 nN, whereas larger force than 20 nN was obtained between PC and iPC brush (Figure 2). A specific strong attractive interaction between PC and iPC were clearly observed. Poly(SB) brushes showed temperature dependency of adhesive interaction corresponding to the UCST behavior in water.

Keynote Forum

Boxin Zhao

University of Waterloo, Canada

Keynote: Dopamine-functionalized polypyrrole nanostructures

Time : 11:35-12:10

Conference Series Polymer Chemistry 2018 International Conference Keynote Speaker Boxin Zhao photo
Biography:

Boxin Zhao is a tenured associate professor at the University of Waterloo. He has created and directed the Laboratory of Surface Science and Bionanomaterials, working on both fundamental and applied research. He has 180 publications in total; 89 are peer-refereed papers on the top journals including Langmuir, Macromolecules, Advanced Materials, and Advanced Functional Materials, PNAS. The current research interests of his group are in the areas of polymers and multifunctional composites, interfacial technologies and surface science, biomimetic adhesion and adhesives, 3D printing, interfacial phenomena and contact dynamics in polymers and biological systems.

Abstract:

Surface modification and functionalization of polymers are playing increasingly important roles in the development of new functional materials with desired properties for applications in the advanced manufacture, energy, healthcare etc.  Polypyrrole (PPy) is one of the most interesting and well-studied electrically conductive polymers because of its long-term stability and good biocompatibility. However, PPy is difficult to be further functionalized and processed because PPy is in a form of black precipitate that is insoluble in water and in most organic solvents, and has a weak adhesion to surface.  In this talk, I will review our recent research development on the use of catechol chemistry for the functionalization of polypyrrole and the fabrication of varied catechol-polypyrrole nanostructures with tunable morphologies and conductivities and discuss their potential applications.  Inspired by the catechol and amine functional groups found in the adhesive proteins of marine mussels, we have exploited one of the simplest catecholamines, dopamine (DA), for surface modification and functionalization of PPy.   Even though dopamine is insulating, adding a small of dopamine can surprisingly increase the conductivity of polypyrrole. We attributed this feature to the molecular adhesion of dopamine with polypyrrole resulting in the formation of hydrophilic core/shell nanofibers, which are readily dispersible and provides more effective electrical pathways than the globular nanoparticle without dopamine. It was also found that the morphology and conductivity of the dopamine (DA)-functionalized polypyrrole (Py) could be finely controlled by the DA/Py reaction ratio. For instance, at higher reaction ratios, we observed the morphologies of nanoflakes, which are less conductive but can be used in electromagnetic interference shielding applications.

Keynote Forum

Aman Ullah

University of Alberta, Canada

Keynote: Biomaterials from renewable lipids

Time : 12:10-12:45

Conference Series Polymer Chemistry 2018 International Conference Keynote Speaker Aman Ullah photo
Biography:

Ullah received his PhD in Chemical Sciences and Technologies in 2010 at the University of Genova, Italy working together at Southern Methodist University, USA. He worked as a postdoctoral fellow, Assistant Professor and was promoted to Associate Professor with Tenure at the University of Alberta. He teaches a graduate course which deals with fundamentals in bio-based materials development, characterization, and various industrial applications. Aman has published more than 42 papers in reputed journals and 4 patents/patent applications. He has participated and presented his work at more than 90 National and international scientific meetings and conferences, including several invited, keynote and plenary lectures at conferences and research centers in Asia, Europe, and America. In addition, he has received several awards including Canadian Rising Star award in Global Health by Grand Challenges Canada

Abstract:

 

In recent years, the use of renewable natural resources has become the focus of research in supplementing and replacing traditional petrochemical products due to growing energy demands and environmental concerns. The utilization of lipids has been considered to play a primitive role towards sustainable development due to their large-scale availability, built-in-functionality, biodegradability and no net CO2 production. In addition, a broad range of monomers can be obtained from lipids as a single feedstock. These attributes make lipids a good fit for the development of renewable biomaterials. This Presentation will focus on the conversion of lipids, from various sources including waste streams such as waste cooking oil and lipids extracted from spent foul, into monomers, biopolymers, and biomaterials. The ability for complete conversion of oils in just a few minutes under solvent-free conditions into monomers, biopolymers, and bio-composites is undoubtedly an attractive concept from both an academic and an industrial point of view.

Break: Lunch Break 12:45-13:45 @ Dorothy Hall

Keynote Forum

Lee D. Wilson

University of Saskatchewan, Canada

Keynote: Development of responsive biopolymer materials: Investigation of their structure and adsorption properties

Time : 13:45-14:20

Conference Series Polymer Chemistry 2018 International Conference Keynote Speaker Lee D. Wilson photo
Biography:

Wilson is affiliated with the Department of Chemistry at the University of Saskatchewan and is an Associate Professor with research interests that cover diverse topics in physical chemistry, materials science and environmental chemistry. Ongoing research activities are focused on the development of new types of materials and studies related to adsorption and interfacial phenomena related to water science and technology. The Wilson lab is developing new forms of sustainable biomaterials for the controlled removal of contaminants from water and chemical separations using methods based on green chemistry. This research contributes to the science and technology of “smart” adsorbent materials and applications that range across water and energy security.

Abstract:

Statement of the Problem: There is a need to develop improved biopolymer adsorbents with responsive properties and enhanced adsorption toward target species for specialized applications in water treatment. In this study, polymer brushes and their iron oxide composites were prepared and characterized, along with the efficacy of methylene blue (MB) removal from aqueous solution. These “smart” materials were designed by grafting biodegradable polymers, polyacrylic acid (PAA) or poly itaconic acid (PIA) onto chitosan to yield pH-responsive polymer brushes of PAAgCHI, PIAgCHI and their magnetic nanocomposites (MNCs) containing iron oxide, respectively (Fig. 1). The MNCs are pH-sensitive and magnetically responsive adsorbents with switchable polymer morphology between swollen and collapsed states, along with the controlled adsorption and desorption of MB. Switchable MB uptake is based on the pH driven molecular recognition and conformational changes of brushes. The adsorption capacity of the materials varies between 421.2 to 470.2 mg g–1 with a removal efficiency of 99.2% (Fe3O4–PIAgCHI) and 99.5% (Fe3O4–PIAgCHI) for the MNCs. Sorbents can be recovered and efficiently regenerated by switching the pH of a solution under an applied external field over five recycle steps. This work illustrates the potential utility of “smart” polymer brush systems for the remediation of model cationic dyes in wastewater. These eco-friendly sorbent materials possess excellent adsorption capacity, modular design, low cost, excellent regeneration, and rapid separation. Potential applications of these materials include the controlled removal of antimicrobials, pesticides, and personal care products from water and wastewater streams with high efficiency and recovery.

  • Functional Polymers |Polymer Material Science and Engineering | Bio-related Medical Polymers|Polymer Nanotechnology | Biochemical Degradation of Polymers | Polymer Synthesis and Polymerization| Bio Plastics
Location: Frederick

Session Introduction

Thi-Thanh-Tam Nguyen

University Paris-Est Creteil Val De Marne, France

Title: Versatile approach to polyelectrolyte multilayer films with enhanced stability using functionalized polyelectrolytes

Time : 12:40-13:00

Speaker
Biography:

Thi-Thanh-Tam Nguyen has received her PhD in Organic Synthesis and Material-Polymer Chemistry in 2009 at the University of Strasbourg with Dr. Philippe Mesini. After two years working as postdoctoral fellow at Max-Planck Institute for Polymer research (MPIP, Mainz, Germany) in the group of Prof. K. Mullen about the design and the synthesis of photoresponsive polyphenylene dendrimers, she joined Dr. A. Wagner to work in the synthesis of bioactive molecules at the Faculty of Pharmacy in Strasbourg and then worked as temporary assistant professor at the Ecole Normale Superieure (ENS de Lyon) with Dr. Cyrille Monnereau. In 2015, she was appointed as the lecturer in the University Paris-Est Creteil and currently works in the group of Dr. D. Grande. Her main research interest is about the synthesis and the characterization of polyelectrolyte/thermosetting polymer-based materials with controlled morphology and functionality for miscellaneous applications 

Abstract:

The past few decades have witnessed a rapid development of polyelectrolyte-based materials in different fields, such as cosmetic,1 concrete and cement formulation (superplasticizer),2 water treatment (membrane),3 drug delivery,4 tissue engineering,5 and surface coating, especially via the formation of Layer-by-Layer (LbL) polyelectrolyte films.6,7 Advances in this field impose challenges on the development of functionalized polyelectrolytes (PEs).8, 9

In this presentation, a general approach to side-chain allylfunctionalization of three different polyelectrolytes (PEs), namely poly(allylamine) hydrochloride (PAH.HCl), branched polyethyleneimine (PEI) and poly(sodium 4-styrene sulfonate) (PSS), currently developed in our laboratory, will be presented.10 The application of the resulting functional polyelectrolytes (PSS-ene, PAH-ene and PEI-ene) in the buildup of LbL films with enhanced stability under extreme conditions of pH and high ionic strength will also be discussed. Such stability is achieved thanks to the presence of allyl groups not only on PEs-ene but also on the substrate (called substrate-ene) which allows for photocrosslinking between different layers of PE-enes and also with substrate-ene in the presence of a water-soluble dithiol crosslinking agent via "click" thiol-ene chemistry. The feasibility of this approach has been demonstrated both on a gold model substrate and on an AMX-type anion exchange membrane, both previously functionalized with allyl groups either by sulfur-gold chemistry or by chemical reduction of aryldiazonium salts, respectively.

The versatility and effectiveness of the approach reported here are expected to find widespread interest in different fields of emerging applications, including advanced membrane separation and purification, antifouling and bioactive surface engineering, soft nanotechnology and self-assembly.

Break: Lunch Break 13:10-14:00 @ Dorothy Hall
Speaker
Biography:

 

Valentina Sabatini is a young post-doc researcher in the Department of Chemistry at the University degli Studi di Milano, Italy. Her research interests lie in the area of polymeric materials, ranging from synthesis, characterization, and functionalization of several kinds of polymeric materials to their industrial application. She collaborates actively with researchers in other disciplines of materials science, particularly physical-chemistry and electrochemical area on the development of new hybrid and smart materials. The high number and quality of scientific papers, patents, oral communications in meetings and awards received can demonstrate her passion and devotion to her work and materials science.

Abstract:

Since the mid-1990s, numerous studies on the treatment of natural and industrial waters by photocatalysis have been reported. The photocatalytic process can completely degrade several organic compounds [1] and is promising in the case of polluted surface waters[2], such as lakes or seas, whose contamination may arise from industrial activities, but also from catastrophic events.

In this study, a photocatalytic floating hybrid device was developed for environmental remediation applications in the case of surface waters containing organic contaminants and their vapors, such as fuels, oils, and chemical products. In fact, it may be difficult to remove these compounds using conventional remediation techniques due to the hydric area dimensions to be reclaimed.

The innovative device proposed here is a multilayer polymeric/TiO2 composite with a hydrophobic/superhydrophobic side, necessary to permit the device flotation during its application in water, and a photocatalytic layer active in the degradation of water pollutants. The hydrophobic side was obtained by synthesizing an oxygen permeable Polyacrylate-based polymer with high photochemical, mechanical and thermal resistance. A novel procedure involving the use of fluorinated co-monomers and controlling the polymeric foil morphology during solvent casting deposition was developed[3,4]. On the other side of the polymeric foil, the photoactive TiO2-based layer was obtained by an ad hoc multi-layer spray-coating deposition of a home-made transparent titania solution. The procedure permitted both to preserve the polymeric support properties and to favor the adhesion of the inorganic coating onto the organic surface, via a protective interlayer made of SiO2 microparticles, prepared by adopting the Stober method. Starting from a multilayer hybrid composite, a highly versatile photo-catalytically active device was developed: the possibility to easily modulate the dimension of such device can pave the way towards new and strategic applications for both natural and industrial water treatments.

Speaker
Biography:

Lucio Colombi Ciacchi gained a PhD in materials science in 2002 and holds the Hybrid Materials Interfaces chair at the University of Bremen since 2008. He is the Speaker of the MAPEX Center for Materials and Processes and Coordinator of the interdisciplinary study program “Process-Oriented Materials Research”. He has published more than 90 peer-reviewed papers in materials engineering, chemistry, and physics. His research is devoted to the atomic-scale study of interfaces between different materials and phases, with particular interest in bio-hybrid and soft-matter/hard-matter interfaces, combining both modelling and experimental techniques.

Abstract:

Co-curing of a thermoset (TS) epoxy matrix in contact with thermoplastic (TP) foils is an essential step in a damage-free joining of polymers or polymer-based composites. However, to date, the molecular topology of the resulting hybrid TS/TP interfaces is not known. Also, it remains to be explored whether only physical (non-covalent) interactions between the two components occur, or if instead, and under which conditions, covalent bonds may form as a result of the TS resin chemically reacting with the TP chains. Such details are challenging to resolve via experimental approaches alone, which motivates the use of all-atom molecular simulation techniques in order to shed light on the details of the hybrid interface. Using polyvinylidene difluoride (PVDF) and a multicomponent epoxy resin as model systems, we have developed a computational co-curing protocol that ensures both adequate structural representation and mobility of the PVDF chains and a realistic cross-linking conversion and topology of the epoxy resin. As a result, we reveal that mutually entangled loops of thermoplastic chains and resin strands from across the interface within the extended interphase region separating the two polymers. In tensile stress simulations, we find that these loops contribute to a surprisingly large interfacial strength. In the absence of extrinsic defects, failures nucleate at the PVDF side of the interphase and propagate via a chain-pullout mechanism characteristic of semi-interpenetrating polymer networks involving thermoplastic materials. The possibility of chemical reactions between the epoxy molecules and the polar PVDF chains is explored by means of quantum mechanical calculations at the level of Density Functional Theory. Finally, the kinetics of the diffusion and co-curing conversion processes are estimated via a mesoscopic model based on the numerical solution of reaction-diffusion equations able to reproduce characteristic experimental thicknesses of the TS/TP interface region.

 

Speaker
Biography:

Dr. Riley Gatensby graduated from Trinity College Dublin in 2012 with an undergraduate degree in Nanoscience, Physics, and Chemistry of Advanced Materials. He subsequently undertook postgraduate studies where he worked on synthesizing and characterizing two-dimensional semiconducting transition metal dichalcogenides. He earned his PhD in 2018 from the Department of Chemistry, Trinity College Dublin. He is currently a postdoctoral researcher in the Intelligent Nano Surfaces group of Dr. Parvaneh Mokarian. His current research interests focus on the plasma etching of BCP patterns into different substrates for optical, semiconductor, lithographic and energy applications

Abstract:

Nanostructured surfaces that engineer the interaction between incident light and an object are a topic of both scientific and manufacturing significance.1 One drawback to manufacturing these structured surfaces is their limited up-scalability to large areas due to limitations of conventional UV lithographic approaches, the inability to pattern curved surfaces and the high cost of necessary infrastructure. Block copolymers (BCPs) show much promise for nanolithography applications, as they can address these issues.2 In this work, a solution process based on high molecular weight BCP self-assembly is used to impart cylindrical patterns to glass substrates, with subwavelength features.3 The feature sizes and spacings are designed to efficiently scatter visible light.4 We present BCP phase separation leading to well-ordered hexagonal nano-patterns with feature diameters of ~130 ± 15 nm and periodicity of ~160 ± 20 nm. Ni ions are selectively incorporated into the P2VP block, and UV/ozone processing allows for the pattern to be transferred as a metal oxide etch mask.5 ICP-RIE plasma etching was performed, transferring the pattern into the substrate. The resulting nano-pillars form a Gradual Refractive INdex (GRIN) change and result in drastically reduced reflectance. Over a wide range of angles, the reflectivity is reduced by 40% in the range of 1100 nm – 2 μm, with only one side of the glass, treated. This nano-patterning process based on BCPs is applicable for a wide range of substrates, both curved and planar, it has the added advantage that it avoids the previous inherent size limitations of BCPs (5-100 nm), and it makes surfaces suitable for enhanced transparency, light focusing, anti-reflection and tuning photon absorption. This technique facilitates fabrication of a high density ordered an array of nano-pillars with tunable height, which are easily scalable and can be formed at room temperature. GRIN may now achieve a broadband elimination of reflections, outperforming other anti-reflective coatings for high-quality glass optics.

Speaker
Biography:

Tianzhu Zhang obtained his PhD degree from the Institute of Chemistry, the Chinese Academy of Sciences in 2003. From 2004 until 2009, he conducted his post-doctoral research at Ghent University (with Prof Dr. Filip Du Prez), the Catholic University of Leuven (with Prof Dr. Erik Nies) in Belgium, at Technische Universitat Munchen and the University of Ulm (with Prof Dr. Bernhard Rieger) in Germany. In 2009, he joined the School of Biological Science and Medical Engineering at Southeast University in China as a full professor. As a head of the research group, his  research interests mainly focus on the surface functionalization of polymer materials and ECM-mimic smart hydrogel. In 2009, he was the Winner of Education Ministry's New Century Excellent Talents Supporting Plan for his excellent work. In 2011 he was awarded the first prize of China Petroleum and Chemical Industry Federation of Science and Technology Progress

Abstract:

In hernia repair, polypropylene (PP) mesh is one of the most common prosthetic materials because it leads to successful long-term treatment. However, when a prosthetic material is placed on an intraperitoneal hernia, it may lead to serious adhesions between the mesh and viscera, which limits its application. In the present study, dopamine methacrylamide (DMA), a derivative of dopamine, was polymerized and then reacted with polyethylene glycol methacrylate (PEGMA) to produce poly(polyethylene glycol methacrylate-co-dopamine methacrylamide) (p(PEGMA-co-DMA)) using traditional free radical polymerization. It was grafted in situ on the PP mesh’s surface utilizing the dopamine catechol group to obtain an anti-adhesive PP mesh. The structure and properties of the p(PEGMA-co-DMA) graft were characterized by Nuclear Magnetic Resonance (NMR), Gel Permeation Chromatography (GPC), Attenuated Total Reflection Flourier Transformed Infrared Spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), Thermal Gravimetric Analysis (TGA), water contact angle measurements and scanning electronic microscopy (SEM). NIH-3T3 cells were employed to assess anti-adhesion and biocompatibility in vitro. Moreover, the efficacy of the p(PEGMA-co-DMA)-coating as a barrier for reducing post-surgical adhesions was evaluated with a rat abdominal wall defect model. Compared with the native PP mesh, the p(PEGMA-co-DMA)-grafted PP mesh demonstrated excellent anti-adhesion and biocompatibility properties both in vitro and in vivo testing. The results suggest that this kind of p(PEGMA-co-DMA)-grafted PP mesh is a promising candidate for abdominal wall defect repair.

Gyu Leem

State University of New York, USA

Title: Molecular and polymer chromosphere: Catalyst assemblies for solar fuels production

Time : 15:20-15:40

Speaker
Biography:

Gyu Leem earned his B.S. in Chemical Engineering from the Hanyang University, Seoul, Korea and Ph.D. in Chemistry from the University of Houston, Houston, TX in 2008. After completing his Ph.D., he spent three years working as a principal scientist at LG R&D in South Korea. He was responsible for the design and synthesis of high-performance water-absorbing polymer materials for personal hygiene products.  In 2012, he moved to the University of Florida and performed postdoctoral research with Professor Kirk S. Schanze as a part of University of North Carolina Energy Frontier Research Center: Center for Solar Fuels, an Energy Frontier Research Center. In 2016, he then moved to the Department of Chemistry at the University of Texas at San Antonio as an assistant professor of research.  Now he is appointed to assistant professor at the State University of New York - College of Environmental Science and Forestry (SUNY ESF), Syracuse, NY in 2018.  His research interests are

1) Polymeric metal chromosphere-catalyst assemblies for solar energy conversion

2) polymer-coated magnetic hydrogels for heavy metal removal from wastewater

3) Photoinduced electron transfer initiation of free radical polymerization for 3-D network polymers    

Abstract:

In natural photosynthesis, a multi-chromophore antenna system absorbs light efficiently and transmits excited-state energy rapidly to a reaction center. Related antenna strategies can be available for dye-sensitized photoelectrochemical cells (DSPECs) applications by using polychromophoric polymers.  DSPECs convert energy from the sun directly into fuel. Toward fabricating DSPEC devices, we reported the synthesis and properties of novel light harvesting polymers featuring pendant polypyridyl ruthenium complexes. These polymers are ionic polyelectrolytes due to the cationic or anionic charge on the individual chromophore centers. As such, the polyelectrolyte can be utilized to fabricate nanostructured polyelectrolyte layer-by-layer (LbL) films. LbL polyelectrolyte self-assembly allows facile control of the polychromophore-catalyst assemblies prepared directly on the surface of semiconductors. The photophysical and electrochemical properties of the polychromophore-catalyst assembly were characterized at the semiconductor interface. The energy and electron transfer processes were investigated in the polymer assembly. Importantly, prolonged photo electrolysis experiments, with the use of a dual working electrode collector−generator cell, reveal production of O2 and H2 from the illuminated photoanode and photocathode. Polymeric chromophore-catalyst assemblies containing chromophore units and an oxidation catalyst were developed to demonstrate its use in light-driven water oxidation and reduction for a DSPEC application. This is the first report to demonstrate the use of polyelectrolyte LbL to construct chromophore−catalyst assemblies for water splitting reaction.

Sabad-e-Gul

Dublin Institute of Technology, Ireland

Title: Modified photonic structures created by holography: Application to metal ions sensing

Time : 15:40-16:00

Speaker
Biography:

Sabad-e-Gul has due to submit her PhD thesis fall this year from Dublin Institute of Technology, Dublin, Ireland. She did M.Phil (Polymer Technology) from University of the Punjab Lahore, Pakistan. She was first elected president of SPIE chapter (DIT). Her reserach work has been published in more than 7 papers in reputed journals and has been a research assistant on enterprise Ireland projects.

Abstract:

The aim of the presented research is to fabricate and test portable holographic sensors for analytes in liquids. The characteristics that are targeted are simplicity of operation, selectivity, sensitivity and relatively low cost. In order to achieve this aim, photonic devices are fabricated by holographic patterning, with a view to their application in environmental and biomedical sensing. Different types of analyte sensitive materials are used to functionalise the surfaces of these photonic devices [1-2].

The sensors reported here are created by holographic recording of surface relief structures in a self-processing photopolymer material. The proposed technique is used as a platform for the fabrication of sensors with readily varied selectivity. In this work we demonstrate that the photonic structures are modified by three different materials in order to achieve sensitivity to three different target analytes.

LTL-zeolite nanoparticles (fig) [3] were used to fabricate a sensor for detection of copper, calcium and lead  ions in fresh water [3]. The current detection limit of the sensors’ response to water is 63 ppm.

The surface structures were also functionalized by coating with dibenzo-18-crown-6 and Tetraethyl p-tert-butylcalix[4]arene for detection of K+ and Na+, respectively. Both Ionophores have great potential in fabrication of highly sensitive and selective biosensors and the performance of the sensors was investigated. It was observed that functionalisation with dibenzo-18-crown-6 provided a selective response of the devices to K+ over Na+ and Tetraethyl p-tert-butylcalix[4]arene provided selective response to Na+ over K+. The sensors respond to K+ and Na+ within the physiological ranges, which are 3-5 mM and 133 -145 mM, respectively.

Break: Networking & Refreshment Break 16:00-16:20 @ Dorothy Hall

Reza Ahmadi

University of Alberta, Canada

Title: Biobased nylons from Canola oil

Time : 16:20-16:40

Speaker
Biography:

Abstract:

The synthesis of renewable, sustainable, and environment-friendly polymeric biomaterials has got more attention during the last decade. On the other hand, microwave-assisted organic synthesis has become an extremely attractive synthetic tool at the same time due to its distinctive advantages such as shorter reaction times, higher yields, and limited generation of by-products as well as relatively easy scale-up without detrimental effects. Nevertheless, the use of microwave technology in biomaterials science has been relatively few. Therefore, the synthesis of novel, bio-based polyamides from dimethyl 9-octadecenedioate derived from canola oil and diethylenetriamine as well as p-xylene diamine using 1,5,7-Triazabicyclo[4.4.0]dec-5-ene (TBD) as an organic catalyst was studied under microwave irradiation. First, Cross-metathesis of fatty acid methyl esters (FAMEs) from canola oils was carried out using a microwave reactor in solvent-free conditions to get highly pure dimethyl 9-octadecenedioate (diester). Then, Condensation polymerization of diester and diamines as monomers was performed using classical heating and microwave irradiation methods. The resulted polyamides were characterized and analyzed using proton nuclear magnetic resonance spectroscopy (1H-NMR), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), size exclusion chromatography (SEC) and tensile tests. Finally, the beneficial effect of microwave irradiation on the acceleration of the polycondensation of monomers is highlighted. The high molecular bio-based polyamides have the great future potential to be used in different applications as a substitute of petroleum-based polyamides

Speaker
Biography:

Joseph D. Lichtenhan, Ph.D.  Dr. Lichtenhan is a pioneer and authority in the field of POSS® additives. POSS has been hailed as the first entirely new chemical class of monomers to be developed since 1955. His insights into their commercial utility launched the global sales for POSS® in 1998. Dr. Lichtenhan has excelled at technology transition and the establishment of a global footprint for POSS® via innovative sales and marketing techniques.

Abstract:

Statement of the Problem: High-performance aromatic polymers such as PEEK, PEKK, PPS, PPE, PEI etc., are well known to provide outstanding thermal and mechanical properties.  They also require processing at high temperatures.  In the case of PEEK and PEKK, processing temperatures can be in excess of 350 °C.  Even more challenging is when these polymers are combined with filler or fiber reinforcements.  Infilled systems, polymer viscosity increases further which results in increased extruder torque, temperatures, pressures that approach the processing limits of compounding equipment.

A common solution to reducing viscosity is to decrease the molecular weight of the polymer or to use bimodal molecular weight distributions which, while allowable for some uses, can decreased mechanical performance.

The high processing temperatures of aromatic thermoplastics also limit the use of traditional plasticizers due to their propensity to degrade and volatilize during compounding.

For difficult to process polymers, POSS additives are uniquely well suited.  In particular, POSS cages bearing all phenyl groups (such as dodecaphony) melt and are thermally stable in the 400°C temperature range.  When phenyl POSS cages also contain silanols (such as the heptaphenyl trisilanol), they reduce viscosity and behave as high-temperature dispersants.

POSS® chemical additives are a family of chemicals that melds the desirable thermal stability and modulus of inorganic additives (SiO1.5) with organic (R) compatibility to render utility with heritage polymers, resins, monomers, and ingredients.

The mechanism enabling POSS to provide flow enhancement in polymers have been postulated using Einstein sub-rheology. Additionally, the flow enhancement has been described to result from weak forces (Van der Waals, or London forces) between the POSS cages and polymer chain which causes deviation from classical hard-sphere theory.  Perhaps a simpler explanation is that POSS cages melt during compounding.  In the molten state, the cages act as a low viscosity liquid and thus provides a reduction in extrusion torque and viscosity of the polymers.  Upon cooling both the POSS cages and the polymer re-solidify.  The solidification of POSS is highly advantageous as it does not result in post-processing plasticization. At only 1.5 nm in diameter, POSS cages provide a large amount of surface area and volume when incorporated into formulations.  Thus, in addition to flow enhancement, POSS cages can provide surface area and volume control around fillers and other additives.  The dispersion of fillers is particularly well suited to POSS cages bearing silanol groups (such as trisilanol heptaphenyl POSS).  Additionally, the high surface area of POSS can also aid in the nucleation and growth of polymer spherulites.  In this light, POSS cages can be utilized to speed-up processing conditions and improve cycle times.

Speaker
Biography:

Abuzar Kabir is a Research Assistant Professor at the Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA. His research focusses on the synthesis, characterization, and applications of novel sol-gel derived advanced material systems in the form of chromatographic stationary phases, surface coatings of high-efficiency microextraction sorbents, nanoparticles, microporous and mesoporous functionalized sorbents, molecularly imprinted polymers for analyzing trace and ultra-trace level concentration of polar, medium polar, nonpolar, ionic analytes, heavy metals, and organometallic pollutants from complex sample matrices. His inventions, fabric phase sorptive extraction (FPSE), and dynamic fabric phase sorptive extraction (DFPSE), capsule phase microextraction (CPME), molecular imprinting technology, super polar sorbents, In-Vial microextraction (IVME) have drawn global attention. He has developed and formulated numerous high-efficiency sol-gel hybrid inorganic-organic sorbents based on Silicon, Titanium, Zirconium, Tantalum, Germanium chemistries. Dr. Kabir has authored 16 patents, 9 book chapters, 52 journal articles and 90 conference papers.

Abstract:

Due to the explosive growth of anthropogenic activities during the last couple of decades, freshwater systems across the world have been continuously polluted by numerous toxic and hazardous synthetic organic compounds produced for industrial, domestic and agricultural usage. Many of these pollutants are known as persistent organic pollutants (POSs). When POPs are released into the environment, they remain unchanged for a long period of time by resisting photocatalytic, chemical and biological degradation. Due to their prolonged presence in the environment, many of these pollutants eventually find their way in the food chain, with severe ramifications in the health and well-being of humanity.  As such, it is imperative that these compounds be efficiently removed from environmental water through more efficient sewerage treatment processes and other reliable remediation techniques.

Among many classical processes used in removing pollutants from water such as precipitation, coagulation, sedimentation, filtration, adsorption, chemical oxidation, and ion exchange, adsorption is one of the most effective removal technique. A large number of carbonaceous adsorbents including activated carbon, carbon nanotube, biochars, graphene, beta-cyclodextrin, calixarenes, Carboxen, fullerene, cation exchange resins, anion exchange resins, zwitterionic resins are used as adsorbents in sewerage treatment plants. These adsorbents offer a large variety of intermolecular interactions towards the analytes via µ-µ stacking interactions, cation-µ bonding interactions, electron donor-acceptor interactions, hydrophobic interactions, hydrogen bonding interaction, cation exchange, anion exchange, dipole-dipole interactions etc. Many of these adsorbents possess extremely high surface area and demonstrate a strong tendency to form agglomeration. As such, when they are used in their pristine form, a large portion of their available surface area cannot be readily accessed by the analytes due to their agglomeration and formation of lump. As a result, the adsorption capacities of these adsorbents remain largely unexploited during their applications. The agglomeration of these unique particulate matters can be inhibited by encapsulated them into sol-gel silica network. Sol-gel chemistry provides a convenient and mild reaction pathway to create pure silica or organically modified silica 3-D network. Addition of sol-gel active organic polymer(s) as an additive in the soil solution during the sol-gel synthesis is also a common practice to engineer the selectivity of the resulting sol-gel sorbents. Addition of adsorbent particles into the soil solution during sol-gel synthesis results in a sol-gel composite sorbent system with homogeneously trapped particulate matters. Due to the inherently porous and open architecture of sol-gel silica network, the encapsulated particulate matters maintain their high surface area as well as freely accessible interaction sites. As such, the synergistic combination of silica chemistry, organic polymer chemistry as well as the chemistry of particulate matters result in robust composite material systems capable of exerting intermolecular/ionic interactions towards a wide variety of analytes including polar, medium polar, nonpolar, ionic, and metal species and successfully trap them in the sol-gel composite sorbent matrices. Analytical data obtained from a number of real-life applications of the sol-gel composite sorbents including endocrine disrupting chemicals (EDCs), Pharmaceuticals and personal care products (PPCPs), polycyclic aromatic hydrocarbon (PAHs) in environmental water will be presented.

Speaker
Biography:

Milana Trifkovic obtained her Ph.D. from the Western University in London, Canada, specializing in real time optimal control of crystallization of pharmaceuticals and polymer extrusion. Following her PhD studies, she joined Chemical Engineering and Materials Science Department at the University of Minnesota as a Natural Sciences and Engineering Research Council (NSERC) of Canada Postdoctoral Fellow (PDF). She is an Associate Professor in the Department of Chemical and Petroleum Engineering at the University of Calgary. Her current focus is in advanced materials design, operation and control of complex, non-linear engineering systems.  Her group seeks solutions to these problems through a combination of theoretical and experimental research that enable transforming promising lab concepts into concrete solutions to pressing problems in energy sector.

Abstract:

A few decades of intense research efforts have enabled implementation of polymer nanocomposites and polymer blend nanocomposites within numerous commercial applications. With the estimated annual growth rate of 25%, their application spectrum keeps on growing. However, controlling the dispersion state of nanoparticles in the polymer or polymer blend matrices is difficult to achieve due to the complex and little-understood interplay of particle compatibility, transport behavior, and theology. Controlling the dispersion state then is central to designing a platform for engineering nanocomposite structures for an application of interest.

Recent results will be presented which establish that the effect of polymer-filler interactions at the molecular level dictates the extent of filler dispersion and consequent bulk properties of the derived polymer nanocomposites (PNCs). However, contrary to the common belief, we show that agglomeration of conductive nanofillers, resulting from the low interfacial interaction between polymer and nanofiller, can be highly beneficial for enhancing the electrical properties of the derived nanocomposites. These nanocomposites have been studied using a multi-scale approach, from evaluation of their bulk properties via rheology and conductivity measurements, to microscale characterization via imaging by laser scanning confocal and transmission electron microscopy, and measurement of particle/polymer interactions via atomic force microscopy. This multi-time-scale analysis lends itself naturally to a hierarchical control framework of the particle dispersion in PNCs, whereby overall objectives for the derived nanocomposites can be addressed at a bulk level, while the micro and molecular scale measurements can be used to guide the selection of polymer/nanofiller candidates for an application of interest.

  • Sensor Materials | Composites |Energy Materials |Nano Particals | Non-Metallic Solid Materials | 2D and 3D Imaging | Advanced Functional Materials | Materials Structure Mechanics | 3D and 4D Materials Science |Materials Synthesis & Processing |Surface Chemistry |Nanostructured Materials |Organic Materials |Materials Sustainablity |Nanomaterials in Medical Applications |Electrocatalysis |Organometallic Synthesis
Location: Frederick
Speaker
Biography:

Yasser Hassan has his expertise in the synthesis of semiconductor nanocrystals (NCs) and their application in the state-of-the-art engineering of efficient and low-cost thin-film optoelectronic devices, solar cells and light diodes (LEDs). He is currently a Postdoctoral Research Associate at the Oxford Photovoltaics and optoelectronics Devices Group under Prof. Henry Snaith, University of Oxford. Prior to his current position, he completed his PhD of Chemical Engineering and Applied Chemistry in 2016 from the University of Toronto. Currently, his core contribution focuses on the creation of highly efficient white LEDs with high brightness combined with operational durability. He examines a wide range of different highly emissive and stable perovskite NCs (2D and 3D) emitters, with controlled size and surface structure, which have the desirable emission band gap to cover the whole panchromatic absorption profile with the focus on their optoelectronic applications

Abstract:

Metal halide perovskites are promising candidates for use in light emitting diodes (LEDs), due to their potential for colour tuneable and high luminescence efficiency. While recent advances in perovskite-based light emitting diodes (PeLEDs) have resulted in external quantum efficiencies (EQEs) exceeding 12.4 % for the green emitters, and infrared emitters based on 3D/2D mixed dimensional perovskites have exceeded 15%, the EQEs of the red and blue emitters still lag behind. A critical issue to date is creating highly emissive and stable perovskite emitter with the desirable emission band gap (especially red and blue region) to achieve full-colour displays and white LEDs. A critical issue to date is creating highly emissive and stable perovskite emitter with the desirable emission band gap (especially red and blue region) to achieve full-colour displays and white LEDs. Herein, we report the preparation and characterization of a highly luminescent air-stable suspension of both red cubic CH3NH3PbI3 perovskite nanocrystals (NCs) and high-quality, stable blue colloidal perovskite CsPbBr3 nanoplatelets. Both the red NCs and the blue nanoplatelets exhibit controlled optoelectronic properties with colour purity in the recommended emitting regions (according to Rec. 2020) of band gaps of 1.96 and 2.65 eV, respectively. Photoluminescence quantum yields (PLQY) exceeding 95% for the red NCs and 92% for the blue was achieved. We demonstrate the utility of these nanocrystals in PeLEDs

Alan F. Jankowski

Sandia National Laboratory, USA

Title: Interdiffusion kinetics in Cu-Ni(Fe) nanolaminate structures

Time : 15:40-16:00

Speaker
Biography:

Alan Jankowski completed his PhD in Mechanics and Materials Science at Rutgers University in 1987 and has held scientific, faculty, and management positions at Lawrence Livermore National Laboratory, the Texas Technological University, and Sandia National Laboratory. He has published 135 journal papers, received 29 US Patents, and given 40 invited presentations at international conferences

Abstract:

The decomposition of a one-dimensional composition wave in Cu-Ni(Fe) nanolaminate structures is quantified using x-ray diffraction to quantify the kinetics of interdiffusion processes. A schematic of an A/B nanolaminate structure with A (dark-shaded) and B (light-shaded) atoms is shown (below left) as viewed in cross-section. Features are shown such as a threading dislocation (d), grain boundary (gb) between columnar grains, and the A/B layer pair thickness, i.e. the composition wavelength (lA/B). Cu-Ni(Fe) is a spinodal alloy system where the growth or decay growth of the composition modulation occurs within or above the critical temperature for the chemical spinodal, respectively. A transmission electron microscope, bright-field image and selected area diffraction pattern (insert) are shown (below right) for a Cu-Ni(Fe) nanolaminate with a 4.34 nm composition wavelength, revealing its ultra-fine grain nanocrystalline structure. Evidence of a negative interdiffusivity is found for each of sixteen different nanolaminate samples that are aged at room temperature over a composition wavelength range of 2.1–10.6 nm. A diffusivity value ÄŽ of 1.77 × 10−24 cm2·s−1 is determined for the alloy system at room temperature – perhaps, the first such measurement at a ratio of melt temperature to test temperature that is greater than 5. Although this diffusivity value is extremely small, it is several orders of magnitude greater than that value extrapolated from high temperature to room temperature for a bulk diffusion mechanism. Diffusion mechanisms that are operative from room to high temperatures for the Cu-Ni(Fe) nanolaminate structures (shown in the image below) are reviewed, including the possible effects of short-circuit diffusion through interlayer grain boundaries.

Break: Networking & Refreshment Break 16:00-16:20 @ Dorothy Hall
Speaker
Biography:

Mehry Fattah is a researcher and engineer who has the experience of working within academia and industry on surface engineering, corrosion, and coatings for 9 years. She received her Ph.D. and MSc from Amirkabir University in Metallurgical Engineering (University of Toronto Canadian Accreditation Equivalency). She has successfully proposed a corrosion model that shows how microstructure and composition affect the corrosion mechanism, which leads to lower cost and more efficient solutions to protect the surface deterioration through general and pitting corrosion. She conducted cathodic protection designs which resulted in increasing lifespan and saving money in Oil and Gas industry. She has conference and ISI papers published as the result of her works. She enjoys facing new challenges and forging ahead to find the solutions under tight time frames while inspiring team members.

Abstract:

In this paper, the influence of plasma nitriding and treatment temperature on the corrosion and hardness properties, microstructure and composition of AISI 4140 low alloy steel was investigated. Plasma nitriding treatments carried out in a gas mixture of 85% N2-15% H2, for 5 h at a chamber pressure of 4 mbar at different treatment temperatures varying from 520 to 620 °C. Optical microscopy, scanning electron microscopy, X-ray diffraction, hardness and microhardness measurements and potentiodynamic polarization technique in 3.5% NaCl solution, was used to study the plasma nitrided low alloy steel. The results revealed that plasma nitriding at temperatures between 520 and 570°C can produce a ε phase dominant compound layer which is supported by a diffusion zone. With increasing the treatment temperature from 570 to 620°C, γ′ phase appeared. The thickness of the compound layer and diffusion zone increased with increasing the treatment temperature. The thickest compound layer was produced in the sample was treated at 620°C, composed of two outer and inner layers with different microstructures and compositions and the maximum amount of nitride phases was detected at the depth of 20- 35µm from the surface. The hardness of the surface remarkably improved after plasma nitriding and reached up to a maximum of 945 HV0.05 at 520°C which is almost 5 times higher than of the untreated sample.

Corrosion resistance increased after plasma nitriding at 520°C and continued to increase with increasing the treatment temperature to 545°C. With further increase of temperature from 545°C to 620°C, corrosion resistance decreased to the amount of the untreated sample. The sample treated at 545°C showed the most improved corrosion resistance while simultaneously attained surface hardness as high as about 4 times of the untreated sample.

Speaker
Biography:

Sherif  Mostafa is a postdoctoral fellow at the University of Calgary. He works as a Manager of an analytical chemistry laboratory. He has MSc degree in 2005 in chemical engineering with Thesis Title " Fiber Treatment for Reduction of Radar Signature ".Also, he has Ph.D. degree in 2014 in chemical engineering with thesis title " Creation of Advanced Ceramic Materials in Nanotechnology Range". He has experience in nanoceramic materials synthesis, water treatment, decontamination, antibacterial materials, RAM and preparation of gas sensing materials. Sherif participates in many types of research in different fields. He supervised many types of research in various  fields

Abstract:

SnO2 and TiO2 were loaded onto multi-walled carbon nanotubes (MWCNTs) to form a new composite for the sensing of volatile organic compounds (VOCs). To do this, MWCNTs were dispersed into mixtures of 0.5 wt.% SnO2/TiO2. The TiO2 was converted from anatase to rutile phase through the use of rapid microwave and intense pulsed light techniques. These processes are also used for drying to obtain the materials as a dry powder. The materials were then incorporated into a solution of 5 wt.% polyvinyl butyral (PVB) to form a sol-gel. A gas sensing device was formed by spin coating the materials onto quartz crystal microbalance (QCM). FE-SEM and XRD characterizations indicated that the inclusion of CNTs did not affect the particle size or the morphology of the thin film. Most importantly, the sensor based on the SnO2-TiO2-MWCNT hybrid showed the high and fast response, high selectivity to VOCs relative to hydrogen gas and good stability. Mass and molar adsorption was calculated based on changes in the frequency by the Sauerbrey model. The sensing properties were investigated with different VOCs including ethanol, methanol, isopropanol, and toluene at different concentrations and operating temperatures. Room temperature sensing was achieved and the highest sensitivity was shown towards ethanol with a response time as low as 5 seconds.

Speaker
Biography:

Mrinmoy Misra is an Assistant Professor at the Department of Bionano Technology, Gachon University, South Korea. He graduated with a Ph.D. from Academy of Scientific & Innovative Research, India. He has received awards such as Indian Institute of Technology Kanpur postdoctoral fellowship, 2015, Award of science & engineering research board (SERB) National Post-Doctoral fellowship, 2016. His research interests include thin-film fabrication, nanomaterial-based sensor, photocatalytic materials, nanoparticle synthesis and characterization and solar cells. Dr. Misra has authored 13 research articles in SCI journals

Abstract:

In this paper, we generate piezoelectricity in one-directionally aligned bi-axially grown ZnO nanorods.  The applied force is horizontal to the polarization direction. The piezo-phototronic induced voltage generated from a bending radius is experimentally measured for ZnO NRs. The combination of the photocatalytic effect and piezoelectrochemical phenomenon of ZnO NRs has been used for the degradation of an organic pollutant in the aqueous medium. The mechanical stress creates a polar charge field on the surface of ZnO NRs, which acts as a driving force to enhance the charge separation of photogenerated electron and hole pairs. Subsequently, the charge separation increases the photocatalytic activity of ZnO NRs. Further, coumarin (COU), used as a fluorescent probe for the purpose of detection and measurement of OH. radical is generated during photocatalysis process. The synergistic effect of strain-induced chemical reactions and UV photocatalytic activity can deliver a lucrative approach for degradation of organic pollutants. In addition, this work exhibits an exciting new model of a piezo-phototronic device.

Ramya Nair

Bhabha Atomic Research Centre, India

Title: Structural and luminescence properties of GdBO3:Eu in different crystalline modifications

Time : 17:20-17:40

Speaker
Biography:

Ramya Nair completed her M.Sc. from University of Mumbai with an outstanding grade in the year 2012. During the master's program, she successfully completed six-month dissertation work at Tata Institute of Fundamental Research(TIFR), Mumbai.  Afterward, she got selected in prestigious DAE fellowship scheme for Ph.D. in basic sciences and currently she is pursuing her research work as the senior research fellow at Chemistry Division of Bhabha Atomic Research Center, Mumbai. She has five papers published in journals of international repute and participated in several international conferences and workshops.

Abstract:

GdBO3 belongs to the category of rare earth borates. Its outstanding optical properties with high thermal and chemical stability enable them as potential candidates for solid-state lighting, plasma display panels etc. The motivation of this work is to understand the influence of local environments on luminescence properties of Eu3+ in three different phases of GdBO3, namely monoclinic, triclinic and nano-crystalline forms as this will be helpful for selecting a suitable host for getting optimum luminescence and to get a basic understanding on phase and local environment dependent optical parameters. GdBO3 containing 1at.% Eu3+ were prepared in nano-crystalline, monoclinic and triclinic forms in the present study based on hydrothermal, polyol and solid state reaction of  B, Gd and Eu precursors and subjected structural and luminescence studies. TEM images and SAED patterns confirmed the formation of nanorods of GdBO3 having the monoclinic structure (length~ 200 nm, width ~10 nm) while FTIR patterns have confirmed that in nanorods and triclinic phase boron exists in both diagonal and tetrahedral configurations. Unlike this in monoclinic GdBO3 boron exists only as BO4 structural units constituting B3O99- groups. The relative intensity ratios of electric dipole allowed to magnetic dipole transitions of Eu3+ in triclinic and nanorods of GdBO3 are 2 and 2.3 respectively and are found to be higher than that of monoclinic phase (1.4). The CIE colour coordinates are found to be (0.60, 0.34) for monoclinic, (0.64, 0.36) for triclinic phases and (0.62,0.35) for nanorods, suggesting that the nanorods have improved red colour characteristics compared to the other two forms

Speaker
Biography:

Haijin Liu got her Ph.D. degree in 2010 in environmental science. She works at Henan Normal University as an associate professor. She has been focused on the synthesis of new functional materials and their applications in the environmental area. She has fabricated various functional materials and applied them to adsorption, degradation, energy storage, disinfection, and so on. She worked deeply into the degradation processes and explored different mechanisms. As a visiting scholar, she collaborated with Dr. Aicheng Chen at Lakehead University in Canada during 2013-2014 and worked with Huijun Zhao at Griffith University in Australia in 2016. She hosted and participated in many Chinese projects and owned several Chinese patents.

Abstract:

Statement of the Problem: Photocatalytic technologies, as promising strategies for environmental control, have broad and attractive prospects for the degradation of water and air resident pollutants. However, most single photocatalysts possess some defects, such as narrow light absorption range, the high recombination rate of photo-induced electrons and holes and so on.

Methodology & Theoretical Orientation: In this study, binary heterojunction photocatalysts, SnS2/Bi2MoO6 and SnO2/BiOBr were synthesized by mild hydrothermal methods for the first time. The photocatalytic activities of these materials were evaluated through the degradation of a series of organic pollutants, which possess stable chemical structures, intense carcinogenicity, as well as being recalcitrant to degradation.

Findings: The experimental results indicated that the SnS2/Bi2MoO6 and SnO2/BiOBr composites exhibited significantly enhanced performance in contrast to pure Bi2MoO6, SnS2, SnO2 or BiOBr. In details, the degradation rate constant of CV (crystal violet) using 5 wt% SnS2/Bi2MoO6 photocatalyst was 3.6 times that of the Bi2MoO6 and 2.4 times that of SnS2;  the degradation rate of RhB attained ~98.2% in 20 min. using 30 wt% SnO2/BiOBr, which was close to twice that of pure BiOBr, and 10 times that of pure SnO2. Furthermore, the primary active species in the photocatalytic oxidation process were detected via radical trapping experiments and ESR spectra.

Conclusion & Significance: Two photocatalytic mechanisms were proposed according to the different systems above to elucidate the improvement in photocatalytic efficiency. We trust that the work may provide further knowledge of the design and synthesis of advanced photocatalysts, as well as to inspire further applications of photocatalysts for water purification under visible light irradiation